FAQs zu JMA Was ist die Theorie hinter JMA. Warum hat JMA einen PHASE-Parameter. Prognostiziert JMA eine Zeitreihe. Werden bereits vorhandene JMA-Werte geändert, sobald neue Daten eintreffen. Kann ich andere Indikatoren mit JMA verbessern Hat JMA eine spezielle Garantie Wie funktioniert JMA mit anderen Filtern vergleichen. ALLGEMEINE THEMEN auf JURIK-TOOLS Können die Werkzeuge viele Kurven auf jeder von vielen Diagrammen darstellen. Können die Werkzeuge jede Art von Daten verarbeiten. Können die Werkzeuge in Echtzeit arbeiten. Sind die Algorithmen offenbart oder schwarz-boxed. Müssen Jurik-Werkzeuge in die Zukunft einer Zeitreihe blicken. Haben die Werkzeuge produzieren ähnliche Werte über alle Plattformen (TradeStation, Multicharts.). Do Juriks Werkzeuge mit einer Garantie kommen. Wie viele Installations-Passwörter bekomme ich. Was ist die Theorie hinter JMA. TEIL 1. PREISLÜCKE Die Glättung von Zeitreihendaten, wie z. B. tägliche Aktienkurse, um unerwünschte Störungen zu beseitigen, führt zwangsläufig zu einem Graphen (Indikator), der sich langsamer bewegt als die ursprüngliche Zeitreihe. Diese quotslownessquot wird dazu führen, dass die Handlung etwas hinter der ursprünglichen Serie. Beispielsweise wird ein 31 Tage einfacher gleitender Durchschnitt die Preiszeitreihen um 15 Tage verkürzen. Lag ist sehr unerwünscht, weil ein Handelssystem, das diese Informationen verwendet, seinen Handel verzögert haben wird. Late Trades kann oft schlechter als keine Trades, wie Sie kaufen oder verkaufen auf der falschen Seite der Märkte Zyklus. Folglich wurden viele Versuche unternommen, um die Verzögerung zu minimieren, jeweils mit ihren eigenen Fehlern. Eliminierende Verzögerung, während keine vereinfachenden Annahmen gemacht werden (z. B. dass Daten aus überlagerten Zyklen bestehen, tägliche Preisänderungen mit einer Gaußschen Verteilung, alle Preise sind gleichermaßen wichtig usw.) ist keine triviale Aufgabe. Am Ende musste JMA auf der gleichen Technologie basieren, die das Militär benutzt, um sich bewegende Gegenstände in der Luft zu verfolgen, wobei nichts mehr als ihr lautes Radar verwendet wurde. JMA sieht die Preis-Zeitreihen als ein verrauschtes Bild eines sich bewegenden Ziels (dem zugrunde liegenden glatten Preis) und versucht, den Standort des realen Ziels (reibungsloser Preis) abzuschätzen. Die proprietäre Mathematik wird modifiziert, um die besonderen Eigenschaften einer finanziellen Zeitreihe zu berücksichtigen. Das Ergebnis ist eine seidig-glatte Kurve, die keine Annahmen über die Daten mit beliebigen zyklischen Komponenten macht. Folglich kann JMA Quoton ein Dimequot, wenn der Markt (bewegte Ziel) entscheidet, um Drehung Richtung oder Lücke nach oben / unten um jeden Betrag. Keine Preislücke ist zu groß. TEIL 2. ALLES ANDERE Nach mehreren Jahren der Forschung haben wir Jurik Research festgestellt, dass der perfekte Rauschunterdrückungsfilter für Finanzdaten die folgenden Anforderungen erfüllt: Minimale Verzögerung zwischen Signal und Preis, ansonsten Handelsauslöser kommen spät. Minimales Überschwingen, sonst führt das Signal zu falschen Preisniveaus. Minimale Unterschwingung, sonst geht die Zeit verloren, die auf Konvergenz nach Preislücken wartet. Maximale Glätte, außer bei dem Moment, wenn Preislücken auf ein neues Niveau. Bei der Messung bis zu diesen vier Anforderungen, alle beliebten Filter (außer JMA) führen schlecht. Hier ist eine Zusammenfassung der beliebtesten Filter. Gewichteter gleitender Durchschnitt - nicht auf Lücken reagierend Exponential Moving Average - übermäßige Unterschreitung verrauscht Adaptive Moving Averages - (nicht unsere) in der Regel basierend auf vereinfachten Annahmen über die Marktaktivität leicht getäuscht Regression Line - nicht auf Lücken übermäßigen Überschwingen FFT-Filter - Leicht verzerrt durch nicht-Gauss'sche Rauschen im Datenfenster ist typischerweise zu klein, um die wahren Zyklen genau zu bestimmen. FIR-Filter - hat Verzögerung bekannt als quotgroup delayquot. Keine Möglichkeit, es zu umgehen, wenn Sie einige Ecken schneiden möchten. Siehe quotBand-Passquot-Filter. Band-Pass-Filter - keine Verzögerung nur im Zentrum des Frequenzbandes neigt dazu, oszillieren und Überschreitung der tatsächlichen Preise. Maximale Entropie-Filter - leicht verzerrt durch nicht-Gauss-Rauschen in Daten-Fenster ist in der Regel zu klein, um genau zu bestimmen wahren Zyklen. Polynom-Filter - nicht auf Lücken übermäßiges Überschwingen reagieren Im Gegensatz dazu integriert JMA Informationstheorie und adaptive nicht-lineare Filterung auf einzigartige Weise. Durch die Kombination einer Bewertung des Informationsinhalts in einer Zeitreihe mit der Kraft der adaptiven nichtlinearen Transformation drückt das Ergebnis den theoretischen Quotenabstand auf die finanzielle Zeitreihen-Filterung fast so weit wie es geht. Mehr und wed gegen Heisenburgs Ungewissheitsprinzip (etwas, das niemand überwunden hat, oder jemals wird). Soweit wir wissen, ist JMA die beste. Wir laden alle ein, uns etwas anderes zu zeigen. Für mehr Vergleichsanalyse der Ausfälle der populären Filter, laden Sie unseren Report der Entwicklung der beweglichen Averagesquot von unserer speziellen Reportsabteilung herunter. Sehen Sie unseren Vergleich mit anderen populären Filtern. Warum hat JMA einen PHASE-Parameter. Es gibt zwei Möglichkeiten, um Rauschen in einer Zeitreihe mit JMA zu verringern. Das Erhöhen des LENGTH-Parameters bewirkt, daß JMA langsamer wird und dadurch das Rauschen auf Kosten der addierten Verzögerung verringert wird. Alternativ können Sie die Menge der in JMA enthaltenen quotinertiaquot ändern. Trägheit ist wie physische Masse, je mehr Sie haben, desto schwieriger ist es, Richtung zu drehen. Ein Filter mit einer großen Trägheit erfordert daher mehr Zeit, die Richtung umzukehren und dadurch das Rauschen auf Kosten des Überschwingens während der Umkehrungen in der Zeitreihe zu reduzieren. Alle starken Rauschfilter haben Nachlauf und Überschwingen, und JMA ist keine Ausnahme. Die einstellbaren Parameter PHASE und LENGTH der JMAs bieten Ihnen jedoch die Möglichkeit, den optimalen Kompromiss zwischen Verzögerung und Überschwingen zu wählen. So haben Sie die Möglichkeit, verschiedene technische Indikatoren abzustimmen. Zum Beispiel zeigt das Diagramm (rechts) eine schnelle JMA-Linie, die eine langsamere JMA-Linie kreuzt. Um die schnelle JMA-Linie zu machen, sollte das Quoton ein Dimequot sein, sobald sich der Markt umkehrt. Im Gegensatz dazu war das langsame JMA so eingestellt, dass es eine große Trägheit aufwies, wodurch seine Fähigkeit, sich während Marktumkehrungen zu drehen, verlangsamt wurde. Diese Anordnung bewirkt, daß die schnellere Leitung die langsamere Leitung so schnell wie möglich kreuzt, wodurch niedrige Verzögerungsübergangssignale erzeugt werden. Es ist klar, dass die Benutzersteuerung eines Filterträgheitsmoments eine beträchtliche Leistung gegenüber Filtern bietet, denen diese Fähigkeit fehlt. Prognostiziert JMA eine Zeitreihe. Es geht nicht in die Zukunft. JMA reduziert Rauschen ziemlich genauso wie ein exponentieller gleitender Durchschnitt, aber oft besser. Werden bereits vorhandene JMA-Werte geändert, sobald neue Daten eintreffen. Für jeden Punkt eines JMA-Plots werden in der Formel nur historische und aktuelle Daten verwendet. Folglich werden, da neue Preisdaten auf späteren Zeitschlitzen ankommen, jene Werte von JMA, die bereits gezeichnet sind, nicht betroffen und ändern sich NIE. Beachten Sie auch den Fall, wenn der aktuellste Balken eines Diagramms in Echtzeit aktualisiert wird, wenn jeder neue Tick eintrifft. Da sich der Schlusskurs der letzten Bar wahrscheinlich ändert, wird JMA automatisch neu bewertet, um den neuen Schlusskurs widerzuspiegeln. Jedoch bleiben historische Werte von JMA (auf allen vorherigen Stäben) unbeeinflußt und ändern sich nicht. Man kann beeindruckende Suchindikatoren für historische Daten erstellen, wenn sie sowohl die Vergangenheit als auch die zukünftigen Werte, die jeden verarbeiteten Datenpunkt umgeben, analysieren. Jedoch kann jede Formel, die zukünftige Werte in einer Zeitreihe sehen muss, im realen Handel nicht angewendet werden. Dies liegt daran, dass bei der Berechnung des heutigen Werts eines Indikators zukünftige Werte nicht vorhanden sind. Alle Jurik-Indikatoren verwenden nur aktuelle und frühere Zeitreihendaten in ihren Berechnungen. Damit können alle Jurik-Indikatoren in allen Echtzeitsituationen arbeiten. Kann ich andere Indikatoren mit JMA Ja verbessern. Normalerweise ersetzen wir die meisten gleitenden Durchschnittsberechnungen in klassischen technischen Indikatoren durch JMA. Dies erzeugt glattere und rechtzeitigere Ergebnisse. Zum Beispiel, indem Sie einfach JMA in die Standard-DMI-Indikator, haben wir die DMX-Indikator, die kostenlos mit Ihrer Bestellung von JMA. Hat JMA eine spezielle Garantie, wenn Sie uns einen nicht-proprietären Algorithmus für einen gleitenden Durchschnitt zeigen, der, wenn er in TradeStation, Matlab oder Excel VBA ausgeführt wird, in einem kurzen, mittleren und langen Zeitrahmen einen Batchquot als unseren gleitenden Durchschnitt ausführt Eine zufällige Spaziergang, gut Erstattung Ihrer erworbenen User-Lizenz für JMA. Was wir unter quotbetterquot meinen, ist, dass es im Durchschnitt glatter sein muss, ohne eine größere mittlere Verzögerung als die unsrige, kein größeres durchschnittliches Überschwingen und kein größeres durchschnittliches Unterschreiten als unsere. Das bedeutet, dass die Vergleiche drei separate JMA-Längen enthalten müssen: 7 (kurz), 35 (mittel), 175 (lang). Was wir durch einen zufälligen Weg bezeichnen, ist eine Zeitreihe, die durch eine kumulative Summe von 5000 null-mittleren, Cauchy-verteilten Zufallszahlen erzeugt wird. Diese beschränkte Garantie gilt nur für den ersten Monat, in dem Sie eine Lizenz für JMA von uns oder einem unserer weltweiten Distributoren erworben haben. Wie funktioniert JMA mit anderen Filtern vergleichen. Der Kalman-Filter ist JMA ähnlich, da beide leistungsfähige Algorithmen sind, die für die Schätzung des Verhaltens eines verrauschten dynamischen Systems verwendet werden, wenn alles, was Sie arbeiten müssen, laute Datenmessungen ist. Der Kalman-Filter schafft reibungslose Prognosen der Zeitreihen, und diese Methode ist nicht völlig angemessen für finanzielle Zeitreihen, da die Märkte anfällig sind, gewalttätige Schwankungen und Preislücken zu erzeugen, Verhaltensmuster, die für reibungslose dynamische Systeme nicht typisch sind. Folglich hinterlässt das Kalman-Filter-Glätten häufig hinter oder übersteigt die Marktpreis-Zeitreihen. Im Gegensatz dazu JMA verfolgt Marktpreise eng und reibungslos, Anpassung an Lücken und Vermeidung unerwünschter Überschreitungen. Siehe Diagramm unten für ein Beispiel. Ein in den populären Zeitschriften beschriebener Filter ist der Kaufmann-Bewegungsdurchschnitt. Es ist ein exponentieller gleitender Durchschnitt, dessen Geschwindigkeit je nach Preiswirkungsgrad variiert. Mit anderen Worten, wenn die Preisaktion in einem klaren Trend mit wenig Rückzug ist, beschleunigt der Kaufmann-Filter und wenn die Aktion verstopft, verlangsamt sich der Filter. (Siehe Grafik oben) Obwohl seine adaptive Natur hilft es zu überwinden einige der Verzögerung typisch für exponentielle gleitende Durchschnitte, es immer noch erheblich hinter JMA. Lag ist ein grundlegendes Thema für alle Händler. Denken Sie daran, jede Bar von Verzögerung verzögern kann Ihre Trades und leugnen Sie profitieren. Ein anderer gleitender Durchschnitt, der in populären Zeitschriften beschrieben wird, ist Chandes VIDYA (Variable Index Dynamic Average). Der Index, der am häufigsten in VIDYA verwendet wird, um seine Geschwindigkeit zu bestimmen, ist die Preisvolatilität. Da die kurzfristige Volatilität steigt, ist der exponentielle Gleitende Durchschnitt von VIDYA so beschaffen, dass er sich schneller bewegt und die Volatilität sinkt, verlangsamt sich VIDYA. Auf der Oberfläche macht das Sinn. Leider hat dieses Design einen offensichtlichen Fehler. Obwohl die seitliche Stauung ungeachtet ihrer Volatilität gründlich geglättet werden sollte, würde eine sehr volatile Periode der Stauung von VIDYA genau verfolgt (nicht geglättet) werden. Folglich kann VIDYA es unterlassen, unerwünschte Störungen zu beseitigen. Zum Beispiel vergleicht das Diagramm JMA mit VIDYA, die beide so eingestellt sind, dass sie einen Abwärtstrend gleich gut verfolgen. Doch während der darauffolgenden Überlastung, VIDYA nicht glätten die Preisspitzen während JMA erfolgreich gleitet durch das Geschwätz. In einem anderen Vergleich, bei dem sowohl VIDYA als auch Juriks JMA die gleiche Glätte hatten, sehen wir in dem Diagramm, dass VIDYA hinterherhinkt. Wie bereits erwähnt, können späte Zeiten leicht stehlen Sie Ihre Gewinne in jedem Handel. Zwei weitere beliebte Indikatoren sind T3 und TEMA. Sie sind glatt und haben wenig Verzögerung. T3 ist der bessere der beiden. Nichtsdestoweniger kann T3 ein schweres Überschwangsproblem zeigen, wie in der folgenden Tabelle zu sehen ist. Abhängig von Ihrer Anwendung, können Sie nicht wollen, dass ein Indikator zeigt ein Preisniveau der realen Markt nie erreicht, da dies unbeabsichtigt initiieren unerwünschte Trades. Hier sind zwei Kommentare auf der entsprechenden Internet-Foren veröffentlicht: "Die T3-Indikator ist sehr gut (und Ive sang sein Lob vor, auf dieser Liste). Allerdings hatte Ive die Möglichkeit, einige alternative Marktmessungen abzuleiten und ich glätte sie. Sie sind ziemlich schlecht benommen manchmal. Bei der Glättung wird T3 instabil und überschlägt schlecht, wohingegen JMA durch sie hindurch segelt. Allan Kaminsky beendet die Xmission. Meine eigene Ansicht von JMA steht im Einklang mit dem, was andere Leute geschrieben haben (Ive verbrachte viel Zeit damit, JMA visuell miteinander zu vergleichen TEMA I wouldnt denken jetzt der Verwendung von TEMA anstelle von JMA).quot Steven Buss sbuss pacbell. net Ein Artikel in der Jan. 2000 Ausgabe von TASC beschreibt einen gleitenden Durchschnitt in den 1950er Jahren entworfen, um niedrige Lag haben. Sein Erfinder, Robert Brown, entwarf die quotModified Moving Averagequot (MMA), um Verzögerungen bei der Schätzung der Vorräte zu reduzieren. In seiner Formel, schätzte die lineare Regression die Kurven aktuelle Momentum, die wiederum verwendet wird, um die vertikale Verzögerung zu schätzen. Die Formel subtrahiert dann die geschätzte Verzögerung von dem gleitenden Durchschnitt, um niedrige Verzögerungsergebnisse zu erhalten. Diese Technik funktioniert gut auf gut erzogen (reibungslos Übergang) Preis-Charts, aber dann wieder, so tun die meisten anderen erweiterten Filter. Das Problem ist, dass der reale Markt alles andere als gut benommen ist. Eine echte Maßstab für die Fitness ist, wie gut jeder Filter arbeitet auf realen Finanzdaten, eine Eigenschaft, die mit unserer gut etablierten Akku von Benchmark-Tests gemessen werden kann. Diese Tests zeigen, dass MMA Preisdiagramme übersteigt, wie unten dargestellt. Im Vergleich dazu kann der Benutzer einen Parameter in JMA einstellen, um den Betrag des Überschwingens einzustellen, sogar vollständig zu eliminieren. Es ist deine Entscheidung. Denken Sie daran, die letzte Sache, die Sie wünschen, ist ein Indikator, der ein Preisniveau zeigt, das der reale Markt nie erreichte, da dieses unbeabsichtigte unerwünschte Handel einleiten kann. Mit MMA haben Sie keine Wahl und müssen mit Überschwingen, ob Sie es mögen oder nicht. (Siehe untenstehende Tabelle) Die Juli 2000 Ausgabe von TASC enthielt einen Artikel von John Ehlers, der ein quotModified Optimal Elliptical Filterquot (abgekürzt hier als MEFquot) beschreibt. Dies ist ein hervorragendes Beispiel für die klassische Signalanalyse. Die folgende Tabelle vergleicht MEF mit JMA, deren Parameter (JMA length7, phase50) so eingestellt wurden, dass JMA so ähnlich wie MEF ist. Der Vergleich zeigt diese Vorteile bei der Anwendung von JMA: JMA reagiert auf extreme Preissenkungen schneller. Folglich werden irgendwelche Schwellwerte, die zum Auslösen von Signalen verwendet werden, früher durch JMA ausgeführt. JMA hat fast kein Überschwingen, so dass die Signalleitung genau verfolgen Preis-Aktion nach großen Preis Bewegung. JMA gleitet durch kleine Marktbewegungen. Dies ermöglicht es Ihnen, sich auf echte Preis-Aktion und nicht kleine Marktaktivität, die keine wirkliche Konsequenz hat. Eine bevorzugte Methode unter den Ingenieuren zum Glätten von Zeitreihendaten besteht darin, die Datenpunkte mit einem Polynom (eq, einem parabolischen oder kubischen Spline) zu platzieren. Ein effizienter Entwurf dieses Typs ist eine Klasse, die als Savitzy-Golay-Filter bekannt ist. Die untenstehende Tabelle vergleicht JMA mit einem Savitzy-Golay-Filter vom Typ cubic-spline (3. Ordnung), dessen Parametereinstellungen oben gewählt wurden, um es so nah wie möglich an JMA auszuführen. Beachten Sie, wie reibungslos JMA durch Regionen der Handelsstaus geht. Im Gegensatz dazu ist der S-G-Filter ziemlich gezackt. JMA ist eindeutig der Gewinner. Eine andere Technik, die verwendet wird, um die Verzögerung in einem gleitenden Durchschnittsfilter zu verringern, besteht darin, etwas Impuls (Steilheit) des Signals zu dem Filter hinzuzufügen. Dieses verringert Verzögerung, aber mit zwei Strafen: mehr Geräusche und mehr Überschwingen an den Preisdrehpunkten. Um Rauschen zu kompensieren, kann man ein symmetrisch gewichtetes FIR-Filter verwenden, das glatter als ein einfacher gleitender Durchschnitt ist, dessen Gewichte: 1-2-3-4-3-2-1 sein können und dann diese Gewichte anpassen, um etwas Verzögerung hinzuzufügen Reduziert. Die Wirksamkeit dieses Ansatzes ist in der folgenden Abbildung dargestellt (rote Linie). Obwohl der FIR-Filter den Preis genau verfolgt, bleibt er noch hinter JMA zurück und zeigt ein größeres Überschwingen. Zusätzlich hat das FIR-Filter eine feste Glätte und muss für jede andere gewünschte Glätte neu gestaltet werden. Im Vergleich dazu muss der Benutzer nur einen quotsmoothnessquot-Parameter von JMA ändern, um einen gewünschten Effekt zu erhalten. Nicht nur JMA produzieren bessere Preis-Chart-Plots, aber es kann auch andere klassische Indikatoren zu verbessern, wie gut. Betrachten wir zum Beispiel den klassischen MACD-Indikator, der ein Vergleich zweier gleitender Durchschnitte ist. Ihre Konvergenz (bewegte sich näher) und Divergenz (auseinander bewegen) signalisieren, dass ein Markttrend sich ändert. Es ist wichtig, dass Sie so wenig Verzögerung wie möglich mit diesen Signalen oder Ihre Trades zu spät haben. Im Vergleich dazu hat ein mit JMA erzeugter MACD deutlich weniger Verzögerung als ein MACD mit exponentiellen gleitenden Mittelwerten. Um diese Behauptung zu veranschaulichen, ist die folgende Abbildung eine hypothetische Preistabelle, die vereinfacht ist, um die markanten Probleme zu verbessern. Wir sehen gleich große Balken in einem steigenden Trend, unterbrochen durch eine plötzliche Abwärtslücke. Die zwei farbigen Linien sind exponentielle gleitende Mittelwerte, die einen MACD bilden. Beachten Sie, dass Crossover tritt eine lange Zeit nach der Lücke, was eine Handelsstrategie zu warten und Handel spät, wenn überhaupt. Wenn Sie versucht haben, das Timing dieses Indikators zu beschleunigen, indem Sie die gleitenden Mittelwerte schneller machen, würden die Linien lauter und gezackt. Dies neigt dazu, falsche Trigger und schlechte Trades zu schaffen. Auf der anderen Seite zeigt die nachstehende Grafik den blauen JMA, der sich rasch dem neuen Preisniveau anpasst und frühere Crossover und frühere Bezeichnung eines Aufwärtstrends ermöglicht. Jetzt können Sie den Markt früher eingeben und fahren einen größeren Teil des Trends. Im Gegensatz zum exponentiellen gleitenden Durchschnitt verfügt JMA über einen zusätzlichen Parameter (PHASE), mit dem der Benutzer das Ausmaß des Überschwingens anpassen kann. In der obigen Grafik konnte die JMA-gelbe Linie mehr als das Blau überschreiten. Das ergibt ideale Übergänge. Eine der schwierigsten Funktionen, um einen Glättungsfilter zu entwerfen, ist eine adaptive Reaktion auf Preislücken, ohne das neue Preisniveau zu überschreiten. Dies gilt insbesondere für Filter-Designs, die die Filter eigenen Impuls als eine Möglichkeit zur Verringerung der Lag. Die folgende Tabelle vergleicht das Überschwingen von JMA mit dem Hull-gleitenden Durchschnitt (HMA). Die Parametereinstellungen für die beiden Filter wurden so eingestellt, dass ihre stationäre Leistung nahezu identisch war. Ein anderes Designproblem ist, ob der Filter die gleiche scheinbare Glätte während der Umkehrung wie während der Trends beibehalten kann oder nicht. Die nachstehende Tabelle zeigt, wie sich JMA während des gesamten Zyklus nahezu konstanter Glätte beibehält, während HMA bei Umkehrungen oszilliert. Dies würde Probleme für Strategien, die Trades auf, ob der Filter bewegt sich nach oben oder unten. Schließlich gibt es den Fall, wenn der Preis aufgibt und dann zurückzieht in einem Abwärtstrend. Dies ist besonders schwer zu verfolgen im Moment des Rückzugs. Glücklicherweise haben adaptive Filter eine viel einfachere Zeit, die anzeigt, wann eine Umkehrung auftrat als feste Filter, wie in der folgenden Tabelle gezeigt. Natürlich gibt es bessere Filter als JMA, meist vom Militär verwendet. Aber wenn Sie im Geschäft der Verfolgung von guten Geschäften und nicht feindlichen Flugzeugen sind, ist JMA die besten erschwinglichen Lärm reduzierender Filter für Finanzmarktdaten verfügbar. Ich versuche es alle in benutzerdefinierten Indikatoren einschließlich der JJMA-Datei. (Ich habe versucht, diese in Experten als auch nur incase) Aber wenn ich sie klicken, tun sie nichts. Ich kann gehen, um zu ändern, aber kann sie nicht auf dem Bildschirm Met Build No, 184 Nun. Es war einige sehr kleine Fehler Insite einer der Indikator. Diese Indikatoren finden Sie nochmals (es sollte jetzt funktionieren). Ausserdem sollte die JJMASeries. mqh-Datei (ebenfalls angehängt) in MetaTraderexpertsinclude sein, sonst wird es nicht funktionieren (es wurde in russischer Sprache in den Kommentaren geschrieben.) Und finden Sie einen anderen Indikator, den Sie an die einzelnen Indikatoren anhängen können Der Preis ist in Bewegung (weiße Linie - KGSP-Kennzeichen) Wenn es nötig ist, etwas in Englisch zu übersetzen lassen Sie es mich wissen 3cJDemarkH Indikator aus diesem Satz ist sehr interessant, aber niemand kann es ohne Kommentare Übersetzung verwenden. Ich möchte über JJMASeries. mqh sagen Datei Diese Datei wurde von Nikolay Kositsin erstellt, um den mql4 Programmentwicklern zu helfen, JMA Glättung für die fast alle Indikatoren zu erhalten. Bitte finden Sie diese Datei auf Englisch übersetzt und beachten Sie, dass es in Ihrem MetaTraderexpertsinclude Ordner sein sollte. Die Beschreibung dieser Funktion ist Die folgende: JJMASeries-Funktion ist für die Umsetzung des JMA-Algorithmus bei der Programmierung alle Indikatoren für die Änderung der Berechnung der klassischen Mittelung zu diesem JMA-Algorithmus erstellt. Diese Version der Datei unterstützt keine EAs. NJMAnumber - Zugriffsnummer zur Funktion JJMASeries. (0, 1, 2, 3 usw.). NJMAdinJ - Parameter, der es erlaubt, die Parameter nJMALength und nJMAPhase auf jedem Balken zu ändern. 0 - Änderung verboten, jede andere Wertgenehmigung. NJMAMaxBar - Maximalwert, es kann die Nummer des Rechenbalken sein. In der Regel Bars-1. NJMAlimit - Anzahl der nicht gezählten Balken plus 1 oder Anzahl der letzten unzähligen Balken, in der Regel: Balken-IndikatorCount () - 1. NJMALLänge - Intensität der Glättung. NJMAPhase - Parameter, der den Wert zwischen -100 ändert. 100, die sich auf die Qualität des Übergangsprozesses auswirken. DJMAseries - Eingabeparameter für die Berechnung der JJMASeries-Funktion. NJMAbar - Nummer der Rechenleiste Dieser Parameter sollte vom Schleifenoperator vom Maximalwert auf Null geändert werden. NJMAreset - Parameter werden die inneren Variablen der JJMASeries-Funktion initialisiert, wenn der Wert -1 ist. JJMASeries () - Wert der dJMAJMA-Funktion. NJMAreset - Parameter, der im Falle eines Fehlers in der Funktionsberechnung den Wert ungleich Null zurückgibt. Dieser Parameter sollte nur variabel sein, nicht der Wert Funktionsaufrufmechanismus: Wenn die Anzahl der Balken 0 ist, müssen die inneren Variablen der JJMASeries-Funktion initialisiert werden, bevor die JJMASeries-Funktion aufgerufen wird. Verwenden Sie dazu die folgenden Parameter: Es ist notwendig, dass der Parameter nJMAnumber (MaxJMAnumber) gleich der Anzahl der Aufrufe der JJMASeries-Funktion ist, dh die Erhöhung der nJMAnumber maximal um 1. nJMAreset sollte durch die Reset-Variable auf -1 zugewiesen werden (Nicht die -1 in der Funktion einfügen, sondern nur durch Parameter). Andere Parameter müssen auf 0 zugewiesen werden. Während der Programmierung von benutzerdefinierten Indikatoren und EA mit JJMASeries-Funktion wird es nicht für Variablen verwendet, um Indikatoren und EAs ab JMA zu benennen. Oder dJMA. Beispiel für Funktionsaufruf: // ---- prüfen auf mögliche Fehler if (Countedbars 0x--) Newdigital: Hat jemand die ursprüngliche JMA-Anzeige. Weil die hier gepostete ist ein Klon und funktioniert nicht richtig. Wenn Sie 2 JMA von verschiedenen Perioden ausführen, startet es ok, dann kommen die 2 Zeilen zu kommen zusammen und bekommen wirklich chaotisch, auf den letzten 20-30 Bars. Es JMA ist ein großes MA, wenn Sie es mit jedem anderen MAs veröffentlicht irgendwo zu vergleichen. Forexpipmaster: Newdigital: Hat jemand den original JMA-Indikator. Weil die hier gepostete ist ein Klon und funktioniert nicht richtig. Wenn Sie 2 JMA von verschiedenen Perioden ausführen, startet es ok, dann kommen die 2 Zeilen zu kommen zusammen und bekommen wirklich chaotisch, auf den letzten 20-30 Bars. Es JMA ist ein großes MA, wenn Sie es mit jedem anderen MAs veröffentlicht irgendwo zu vergleichen. Vielleicht wird es anders sein. Und Sie können versuchen, eine andere JMA aus dem Set hier forex-tsd / Forum (oder lesen Sie diesen Thread von Anfang an). Ich denke das JMA aus dem Set sollte anders sein. Forexpipmaster: NewDigital: Der Link für die JMA ist die gleiche, die ich habe (das funktioniert nicht richtig) und die othe rlink für die JJMA-Serie wird nicht kompilieren, weil der Fehler. Vielleicht können Sie einen Blick auf sie. Jemand muss das Original haben, um den Code zu bekommen, um die JMA zu schreiben, die Sie hier haben, das ist, was ich möchte, um meine Hände auf, aber ich möchte nicht 250,00 für sie bezahlen, wenn möglich. Es ist wahrscheinlich das beste MA, das ich je gesehen habe, und sehr glätten. Ich habe es jetzt von hier aus bereut. Es klappt. Platzieren Sie JJMASeries. mqh-Datei zu Ihrem Experteninclude-Ordner und kompilieren Sie es nicht. Dann legen Sie Indikatoren aus jurikset. zip in Indikatoren Ordner und kompilieren. JJMA. mql4 mit folgenden Einstellungen: Länge 5 // Glättungstiefe Phase 5 // Parameteränderung im Bereich von -100 bis 100, was die Qualität des transienten Prozesses beeinträchtigt Shift 0 // es ist Verschiebung des Indikators InputPriceCustoms 0 // Auswahl des Preises für die Berechnung des Indikators: (0 - Close, 1 - Open, 2 - (HighLow) / 2, 3 - High, 4 - Low, 5 - Heiken Ashi Close, 6 - (OpenClose) / 2). Camisa: Ich versuchte JMA gleitenden Durchschnitt und es sah toll aus, aber ich denke, seine aufgrund der Tatsache, dass es sich ändert nach künftigen Preisbewegung Ein weiterer Lookback-Indikator macht jemand anderes bestätigen, dass Sie absolut richtig camisa sind. JMA ändern. Sie sehen zu perfekt im Nachhinein, weil sie ihre Crossover-Punkte ändern. Ich habe einige Croassovers von 2 JMAs und paar Stunden später gesehen. Es zeigte sich, wie die Übergänge nie passiert. Forex ist die leicht zu handelnde im Nachhinein. Gabroomunda: Sie sind absolut richtig camisa. JMA ändern. Sie sehen zu perfekt im Nachhinein, weil sie ihre Crossover-Punkte ändern. Ich habe einige Croassovers von 2 JMAs und paar Stunden später gesehen. Es zeigte sich, wie die Übergänge nie passiert. Forex ist die leicht zu handelnde im Nachhinein. Grüße geez, dann sind sie nutzlos.
No comments:
Post a Comment